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Consider the standard linear model Yi = + ei , i = I,... ,n,... where

xl, x2, ... are assumed to be known p-vectors, B the unknown 
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sequence each having a median zero. Define the Minimum LI-Norm estimator
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inf{Z=llY i -xjBI: o e RPl. It is proved in this paper that n s

asymptotically normal under very weak conditions. In particular, the
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1. INTRODUCTION AND SUMMARY

Consider the standard linear regression model

- xiOo + e i , i = 1,-..,n.... (.1)

where x1 , x2, ... are assumed to be known p-vectors, 0 the unknown p-vector

of regression coefficients, and el, e2 , ... the i.i.d. random errors with a

common density function f and median zero, f is continuous at 0 and f(O) > 0.

The Minimum L1-Norm (ML1N) estimate gn of 90 is defined as a solution of the

n n
IYi -x 'nl = inf{ IIYi- x!W: a e RP}o (1.2)
i ni=l 1"=

Here we assume that the parameter space is the whole p-dimensional Euclidean

space RP . It will be indicated (see Corollary 3 below) that no change in

the argument is needed when RP is replaced by any of its subset containing

the true parameter s0 as an inner point.

The ML1N estimate, whose usefulness is by now universally recognized,

dates back to Laplace. But for a long time in history itonever attracted

much attention. One reason is in the difficulty of its computation, which

has now been resolved with the advent of modern computing facilities, and

the paper of Charnes et at (1955) linking the computation of en to the solu-

tion of a linear programming problem. Another reason is the lack of an ade-

quate asymptotic theory. It is well known that in the problem of estimating

the median of a univariate population, the sample median is (under certain

conditions) asymptotic normal. Motivated by this simple case, write

n
sn  xi . (1.3)

i1 % I-
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It is naturally expected that (-p-means convergence in distribution)

2f(O)S1/ 2(n -0) A- N(O, Ip), as n (1.4)

under reasonable conditions. Here I is the identity matrix of order p.-p

The first attempt to give a proof of (1.4) was made by Bassett et az

(1978). They assumed that {ei} satisfies the conditions stated earlier, the

solution of (1.2) is unique (a condition difficult to justify), and that

S,/n -+ Q, a positive definite matrix. (1.5)

Unfortunately their argument contains serious mathematical gaps which do not

seem easy to resolve. For one thing, they overlooked the fact that the o(l)

at the right-hand side of the equation above (3.10) of their paper should be

Oh(l), and it is by no means clear that the convergence (as T - -) oh(l) - 0

should be uniform over h e H. Moreover, the assertion (3.9) is not generally

valid. A simple counter-example is (in notations of their paper):

Yt = xt a + ut,  t = 1,2,..., (0: one-dimensional)

x I = l/V7, x2 = 1 + 4/I0, x3 = x4 = ... = 1

u19 u2 ,  ... i.i.d., uI  " N(0,1).

It is easy to verify that all conditions, including the uniqueness assumption

and nonlattice condition, are satisfied. But it can easily be shown that

PT(ZT(S,h) e C[0,1]) 0

for h = 1 (which belongs to H = {1,2,3, ... T) when T = 2,4,6,..., and (3.9)

breaks down (see Appendix 1).

Bloomfield and Steiger (1983) advanced a proof of (1.4) under the assump-

tion that x1l x2, ... are observations of a random vector X with a positive
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definite covariance matrix, and (Xl,Yl), (x2,Y2), ... are stationary and

ergodic. Unfortunately they failed to notice that for {gn(c)} (defined by

(6) on p.45 of their book) to be equicontinuous, g (c) must be defined as

=1 h n (ri(c))n, and not J7=lhn(ri(c)) as in their book. But if g (C) isa 1 n n n-•-
defined as Ji= h _))/n the assertion n-1 (C)] 2f(O)C on p.47

should be [Dn(cn)] - 2f(O)C, and one can only obtain C - a * 0 in probabil-

ity, not the crucial assertion (8) on p.46 of their book, and the proof

breaks down. Besides, they made the mistake that the function h (t) definedn

on p.45 of their book has no second order derivative at t = ±n-p , making

the relation (12) on p.47 invalid.

Meanwhile Amemiya (1982) gave a proof of (1.4) by approximating the

absolute value function with a twice-differentiable one. He made, in addi-

tion to (1.5), the assumption that {xi0 is a bounded sequence, and that B0

is confined in a compact region. Unfortunately his proof, too, is invalid.

One problem is that his assertions (in notations of his paper) A1 -* 0 in

(3.12) and B 1 - 0 (in (3.22)) are both incorrect. Quite contrary, we have

shown by simple arguments that actually A1 -1 C, B 1 - in probability

(see Appendix 2). Another crucial point is that in order to show -

T(i- B*)'( - *) -*0 in probability as T + , (3.11) should be understood

as sup{IS*(6) -S(8)1: 6 e D} - 0 in probability (D is the parameter space),

while his argument, even freed from the error indicated above, is obviously

not sufficient for this.

When the regression model contains a constant term: Y + x 6 + el,
i i-O

i = 1,2,..., Bloomfield and Steiger (1983, p.62 Lemma 1) noticed the interest-

ing fact that the ML1N estimator n of 20 is in fact a sDecial case of a class

of rank estimators introduced by Jaeckel (1972). Jackel showed that his

,~I
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estimator is asymptotically equivalent to an estimator introduced byI!
Jureckova' (1971). From this a proof of asymptotic normality of the ML1N

estimator n can be obtained by using the theorem proved by Juredkova

(1971). However, this does not give a satisfactory solution of the problem

for the following two reasons: First, Juredkovi's theorem imposes very cum-

bersome conditions on the sequence' {xiI which are difficult to verify. Her

theorem also requires the existence of Fisher information of the density f

of the error, so f must be positive and absolute continuous on R'. Even

the simple uniform distribution R(-l,l) does not meet this condition.

Second, the theorem so obtained cannot deal with the case of (1.1) in which

no constant term is present. If such a constant is present, the theorem

cannot deal with this term.

Dupac'ovS (1987) proved a theorem concerning the asymptotic normality

of possible-constrained MLIN estimates in case that {xiI is a random

sequence. Her theorem, when applied to the unconstrained case, gives

roughly the result stated by Bloomfield and Steiger (1983), as mentioned

earlier. There is a mathematically undesirable condition in her theorem:

II~iI possesses a finite moment of third order.

It is the purpose of this paper to give a rigorous proof of (1.4)

under minimum conditions. First, in the i.i.d. case, we have the follow-

ing theorem:

THEOREM I. Suppose that in model (1.l), ele 2, ... are independent

and identically distributed with a common distribution function F, and the

following two conditions are satisfied.

1. There exists A > 0 such that f(u) = F'(u) exists when lul < A, f is

continuous at 0, f(O) > 0 and F(O) = 1/2.
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2. -n is nonsingular for some n, and-- n

lim max ]inx i  0 . (1.6) i
n--= l<i<n On

Then (1.4) is true.

Remark. The condition (1.6) is exactly the same as that which guarantees

the asymptotic normality of the Least Squares estimate of in case that
{ei} is i.i.d. and Ee1 = 0, 0 < Ee2 < G. It was expected that the conditions

ensuring the asymptotic normality of Minimum L1-Norm estimate might be more

stringent (as compared with the LS case), as the Minimum L1-Norm estimate is

nonlinear while the LS estimate is linear.

COROLLARY 1. If {ei} is i.i.d., condition 1 is satisfied, and there

exists constant sequence {g n} such that gn ' gn+l/gn 1 and

SA positive definite. (1.7)

Then (1.4) is true.

Wu (1981) mentioned this condition in connection with the problem of

consistency of LS estimates.

This corollary contains, as a special case, the result stated in Bassett

and Koenker (1978). In turn it implies the following result:

COROLLARY 2. Suppose that {ei} is i.i.d., condition 1 is satisfied,

and xl, !2, ... are i.i.d. observations of a random vector X such that

E(XX') is positive definite, {xi} and {e.} are independent. Then with prob-

ability one (for almost every sample sequence {xi}), (1.4) is true.

Of course, we need not consider (1.4) as a conditional statement: it

is also true unconditionally. Thus we reach the conclusion stated in

Bloomfield and Steiger (1983).
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COROLLARY 3. The Minimum LI-Norm estimate en is weak consistent under

the conditions of Theorem 1 (see the remark after Lemma 4).

This assertion follows from (1.4), and the fact that

i 0. (1.8)

For a proof of (1.8), fix m such that S is positive definite. For any-m ~

positive integer N, denote by P N1 < P '2 < ... < PNp the eigenvalues of SN .

Then by a result of von Neumann (1937), we have

t (m~nl _ mi/ ni, m <_n. og

i-i

But, by (1.6)

1 m m 1
tr(SmSn) = I tr(x 'x'S- ) tr(xSx)n j=1 -j-jn ) .:3-n -j

-~ -J - -
j~xISnl x < m max x!S-l - 0, as n . (1.10)

1= l<i<m,,

Since pml > 0, from (1.9) and (1.10), we have imn 1 -, and (1.0) is

proved. J"

From Corollary 3 it follows that if we use a subset G containing p0 as S

an inner point to replace RP in (1.2), and denote the resultina solution by a-

R(G), we shall have P( (G) _ Cn) 0 as n .. Hence (1.4) is still ttiimn -n n

if n is replaced by n(G).

In passing we note that Y. Wu (1987) proved the strong consistency of II"
under conditions slightly stronger than those of Theorem 1. It does not

seem possible to give a proof under the conditions of Theorem 1.

In practical applications there is usually a constant term in the re- I
-..:

. .-. '
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gression function, and instead of (1.1) we have the form

Y + X! + e1  i = l,...,n (1.11)

Although (1.11), as a special case of (1.1), can be dealt with by Theorem 1,

for inference purpose it will be convenient to have a theorem formulated

in the following manner.

THEOREM 2. Write (cn, n) the Minimum L -Norm estimate of f6), and
n n

n
(x + ... + x )/n, T : (x. -n)(XiXn)' (1.12)

!n . -n -n i=l -n -

Suppose that {e.} is i.i.d., condition 1 of Theorem 1 is satisfied, T isn

nonsingular for some n, and that

lim max (x.- n ) Tn l (x. - x- -
n ) - 0. ().13) .

n- l <i<n -" -n 
.n

Then as n , we have

-n n ~. p
p.

2f(o)Tl/2Bn .B - N(, .p (.4)

2f()v - n o) N(0,1). (1 15)
1 + n'T- x

-n-n !n

Also, the two variables 2f(O)T /2 (n - 0 ) and 
2f(O)./r-{(n - +) +X(

are asymptotically independent.

We note that the weak consistency of Cn and tn still holds true. For

n the assertion follows from (1o14) and Tnl - 0, which is a consequence of
-n -n
(1.13), in much the same way as (1.8) is a consequence of (1.6), For an

the assertion follows from (1.15) and x'T-x - 0 which is a trivial cor- "~nin '.n J

sequence of (l 13) and the fact that T-  0.
-n
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Corollary 2 can trivially be modified to accomodate the model (1.11).

All we need to do is to replace the matrix E(XX') by the covariance matrix

E(X- EX)(X- EX)'.

The above two theorems can easily be extended to the case that el,

e2, ... are independent but not necessarily identically distributed. We

shall only give a formulation of the following result.

THEOREM 3. Suppose that in model (1.1), el, e2 , ... are independent.

the distribution function Fi(x) is differentiable over an interval (-Ae),

Fi(O) = 1/2, i = 1,2,... and A > 0 does not depend on i. Write f.(x) = Fi(x).1'(X1

Suppose that {fi(x)} is equicontinuous at x = 0 and 0 < infifi(O) <

supifi(0) < -. Finally, suppose that (1.6) is true. Then as n - =, we

have

n
2S_1 2  f (O)'() - N(OI 1 (1.16)

Our main task is to prove Theorem 1. Once this is achieved, only some

trivial modifications are needed in proving Theorem 3, and much the same can

be said about Theorem 2, To prove Theorem 1, it wiJl be found convenient

to reformulate the original problem in the following manner. Write
' / 2 x i / 2 Y, e . e

S1  -i = ni' i = l,...,n, -n - o O' Yni I ni e.

Then (1.1) has the form

= xN O i = 1. ,n, n = 1,2, (1.17)Yni ~in n',~,, 
.

with

n

0nix' =I n ,.....i=l -ni -p' =12( 
)
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Denote by 0^n the Minimum L1-INorm estimate of BnO in (1.17). Then we have the

following general theorem, which includes Theorem 1 as a special case.

THEOREM 1'. Suppose that in model (1.17), Xnl, o.10 !nn are known p-

vectors satisfying (1.18), enl, ..., enn are i.i.d. variables whose common

distribution function F does not depend on n and satisfies the condition 1

of Theorem l. Also, assume that

dn - max 0XniII 0, as n (1.19)
l <i<n

where 11-11 is the Euclidean norm in RP. Then as n we have

2f(O)($"n  nO) -.R N(O I p). (1.20)

This theorem will be proved in Section 3. Part of the reasoning is

contained in Section 2 in the form of several preliminary lemmas.

'N p

'NV
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2. SOME LEMMAS

LEMMA 1 (Bennett). Suppose that Cl E" n are independent, E& = 0,

~il < b < -, i = l,...,n, where b is a constant. Write V = I Var(Ei)/n.

Then for any c > 0, we have

n2
P( il i/nj L c) < 2exp(-ne 2/(2V+2bE)). (2.1)

For a proof, see Bennett (1962).

In model (1.17), we can assume that

nO (2.2)

without any loss of generality. This we shall always do in the sequel, and

we have Y ni = eni. For any vector a = (aI, ...,a p)' in RP , write lal =

max i<_pa i . I(A) will be used to denote the indicator of the set A.

LEMMA 2. Suppose that in model (1.17) the conditions of Theorem 1' are

satisfied, with the possible exception of (1.19). Then we have

nI0 i~sgn(YniXinXi (p+l)dn Iln /Vn) (2.3)

with probability one, where sgn(O) = 0, sgn(a) = a/lal for a 0.

Proof. Since by definition n is a minimization point of I
-n

lllni- -xnyil as a function of 6 e Rp, for any unit vector e e Rwe have

by taking directional derivative

n n
I sgn(Yn i  nidn)x'noI(Ynix -ni) + - i2(Y ni n) > 0.

This implies, in view of the arbitrariness 
of e, that

N
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n n
- x"sgn(Y, )xn < Z IXniI(Yni:X'ni,). (2.4)

SisgYni= -nk~n) ~ni i 1(n l ni

Now suppose that I&n < A/(F-dn). If 1 _ i _ i 2 < ... < < n and

Ynk = nkn' k = p+I

Then find real constants cl ,.., cp. not equaling to zero simultaneously

such that ClXni1 + ... + Cp+l = 0. We have

c Yni1 + ... + Cp+iY = 0. (2.5)1 nilP~l np+,

Considering this, and the fact that 10n < A/(/pd ) implies Ix' . I <nnn n - '

we reach the following conclusion:

The event IXniaIYni : x i n) , (p+1)dn , and I^n1 < AI(vpdn)

C the event i 1there exists constants cl ... Cp1<1 <I. <" i p+l <_n I

depending only on x go"'Xni , not all zero, such thatl p+l

p+ 1
PI cjy • = 0, and Yni < , j = (26)j=l 3njj

Since Yni = eni9 enl' ... enn are i.i~d. variables whose common distribution

function is continuous over (-A,A), it is seen that the probability of the

event on the right-hand side of (2.6) is zero0 This fact, taken together
with (2.4), implies (2.3), and the lemma is proved.

In order to introduce the crucial Lemma 3, we have to define some

notations.

By (1.19) it follows that there exists constant sequence {vn) of positive

d~. %~ %~ *** ~~~ ** *~~"~~
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even integers such that as n -

t folloing w2ed 0 ,V 0 1  2d < 1/2, for n large. (2.7)Pn ®  n n n n '

In the following we assume that the conditions of Theorem 1' are met. Write

M Mn [log n/logun], rm ]i n' m = I,...,M, rM+ 1 = n. (2.8)

D (8i .,p)': -n<8 i < i = l,..o,p}. (2.9)

Note that M > 1 for n large. This is true because by (1.18) we have

nd2 >1 therefore Pn < nI 4. Partition D into a number of intervals Dl'

- -(1) (p) Mi2' D JI each having the form {x = (x ( x () a. x < bi

i = 1,...,p}, such that

dl p, L(D) < 1, i n D = 01, i,j = 1 . Jl i j

where L(A) is defined as sup{Ju-vJ: u e A, v e Al. Now each subset Dk is

again partitioned into a number of disjoint intervals [k1' b)k2' .." Dkj

which can further be partioned. This process is defined inductively as

follows: Suppose that after the (m-l)-th round we have partitioned D into

{DJl'"Jm-I} , then in the m-th round we take each D and partition

it into a number of disjoint intervals {Dj: = 1,2,... ,Jm such

that

2p ( < ,-2(m-l) = l,...,. (2.10)
m n LjIm+lt - n

The process ends with the completion of the (M+l)-th round. Denote

Gm = {Djl...j m  = the partitioning of D after the m-th round

m = 1,2,...,M+l. (2.11)
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A typical element of Gm is denoted by B or Dj , and a chosen point in

it is denoted by b or b . Put

= sgn(e -x 1 ) - sgn(e ) (2.12)ni(a) =  g~ni ~ n ni

n(8)= 2(F(xn'B)-l/2) = -E*nl(§) (2.13) '

,ni(O *nQ (2n1-

t = )n) + xni(). (2.14)

By (2.7), when a e D and i < n, we have, for large n,

Ixni < d_ nIW < (2vn)-I (2.15)

and for b e B, b* e B where B e GIn, we have, for large n,

Ix'.(b-b*)l n. p- < dnl-~ I <  22m' < i < n. (2.16) -

From (2.15) and the conditions imposed on the distribution function F (see

condition 1 of Theorem 1), it follows that we can find a constant C > 1 such

that for 0 e D and 1 < i < n:

2{F(x'.+ -2m) - F(Xni.-,n 2m) < V 2m (2.17)

IXni()I < Cpn (2.18)

P(je niI <__ Apd nun ) _ Cdnp n .  (2.19)

Let {ani, 1 < i < n, n = 1,2,...} be a triangular array of real numbers,
,.p

satisfying

n -m/2 r 1
i=ll a 2n  = , jar i _< n  for i > rm+1 (2.20) --r

n~ ri I )n

n : 1,2,..., m : 1,2,...,M+1.

-. , , "..*, '.-, .- * "w , "V," . ".' .. "- " °'-,.,mN.'h,'" "-.' -i' ,, ., -','-"
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Define the following quantities:

ni

1 <m <_M + 1, (2.21)

Um B P supi + ani(tni(a)-tni(b)) >
3
- m+l){ - U(m,B),

BeG= beGm

1 < m < M, (2.22)

(m(l) )m u t .(b 3 ~ ,)

--- ,m V j " a ) I <m < , < M(2.22

"'"Jm+ i ""'m+ 1 < m < M, V 0 (2,23)

In the above expressions E e (0,I), rm , m = I,...,MM+I, has been defined

in (2.8). Further, in the definition of V . the summation runs over allm

m, that is a member of G+i, and b. . is
such (J.Oj' ""'' )l tha.D. i

understood as the point chosen In DI...jt e Gt, while in the definition of

Q and U , b is the point chosen in a member B of G , as stated earlier.
m m m
By these definitions it is easily seen that

S Um + Vm + Ql' m = l,.,M. (2.24)

Therefore, on noticing that QM+ 0 i O, we have

M
Q l (Um+Vm (2,25)

m = M M
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LEMMA 3. Suppose that the conditions of Thonrem 1' are met, and

{ani) satisfies (2.20), e e (0,1). Then when n is large we have

U + Vm< 4U2Pmexr(-48-1 (9-1 )m/2), m - l,...,M (2.26)m m n n

where C is the constant appearing in (2.17)-(2.19).

Proof. Define

2, when leni-Xib4 < Pn2m

nni -- nni(B) 0,ohews (2.27)
O otherwise

where B e Gm and b is the point chosen in B. By (2.14), (2.16) and (2.17),

we have

rm+l

sup 1 ani(tni(B)-tni )
BeB irm+l

rm+1 rm+l

< janil('ni-Enni +2 = 1 aniJEnni •  (2.28)
i=rm1 i=r m+

From (2.16), (2.17) and (2.27), we have

Enni -2m i = rm+1 ,..,r (2.29)

_C , ,n m ,m+ l •

By (2.20), we have for n large

rm~ rm+

2 Im lanilEnni < 21 (Enni) 2 /< 2(m+I
l=rm~ ~ +1 1 /mm "3 ( ~ ) w

< 2Cp-m < c2-1 3-(m+1) (2.30)

From (2.1), (2.28), (2.30) and by Lemma 1, we obtain
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U(m,B) P 11 r Inl~ rn - Eni) > c-13 ml
ma EanI~

2exp c ~22-2 3 -2m+2)/[( rmax rm 2

+ Ef (m+1)max Jani~j (2.31)
1>rm 'i

U(m,B) is defined in (2.22). From (2.17), (2.20) and (2.29), we have, for

large n.

max Ia_ -'12

max En 2 < 2 C 2 mn < ,-m/2 3-(m+1).

r <i<r n- f
m - m+1

Therefore

U(m,B) <_2x(c-(~l im2/6 (2.32)

which implies

2p n 2 exp(- 3 m+l n 12/6). (2.33)

By (2.20),

4 max la. lc3-m+') <_,-m',-(ml/.(.4
i rm+l i n3 ml (.4

By (2.16) and (2.17), we have, on denoting g ni= t ni'..b. ) - t .i(bj..jl

that

Egni < 4J1F(xn jb~ j *,m - n j F1x*b *j~ l

2C 2m -43 (m+l) - (r+l)/2 
(2.35

< Cn < 0 n (.5
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Here b. j, b. were explained following the definition of V .b

b l 'lm bj " m+ l 
m "

From (2.23), (2.34), (2.35), and Bennett inequality (2.1), we have

V(m, j,...,jm)< _ 2exp e 23-(2m+2 [2( max Eg2 i + 4 max ani3-(m+ )

L I <rm+ 1  i>rm+l 1 J
2exp 16 (P /9) ( ~ ) 2.,

which in turn implies

V m _ 2 p ( m + l ) e x p { l- l 6  ( n/ 9 ) ( m + l ) / 2 ) _ _  2 p m e p 1 6 -1 ( / 9 ) m / 2 , . ( 2 .3 6 )

Finally, for n large, (2.26) follows from (2.33) and (2.36). Le ,ia 3 is proved.

LEMMA 4. Under the assumptions of Theorem 1', we have

limP(IRnl > vn) = 0. (2.37)

for any constant sequence {v } such that lim vn = (Here we assume

(2.2).)

Proof. Without losing generality we may assume dnV 2 < 1. Define N.

D S Dn -- < -" < V ' i -
n(1p n 1- n

ni(B) lenil - eni ni l •Ii

n i = E( n i( )) 1
R n i (Q ) = s i( ) -A n i ( ), i = l , ...,n ; n 1 ,2 , ...

The first step is to verify that I.
lim vn2  sup Di iRni(a) = 0, in probability (2.38)

no' B
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In order to do this, we partition the interval D in exactly the same manner

as we have previously done for D defined by (2.9), with pn replaced by vn,

and that instead of (2.8), we now define M as a positive integer satisfying

vn-v 2 M < 2-c3-(l+l)v2  (2:39)

n n

where e > 0 is an arbitrarily given constant. The existence of such M follows

from the fact that vn + =. Also, the partitioning of 0 after the m-th round

will be denoted by Gmo A typical interval belonging to Gm will be denoted

by B or B and a point selected from it by b or b. ,J Define

P(L Rni >)I Ev2/3)

Vm Jl ° ' j m l  i 3 '"Jm °"Ri) Rni~b >Jlo /3m+l 2 3

m = 1,2,.oo,M;

//3)

S=  I su I .(Rni(8)Rni( ) nP n..jm eB... =l - bjl'" . / n/
Im 31"3 n m 'n

m 12.oMl

Note that for any B e GM+l and B e B we have, in view of (2.39),

n n n

-VWI§bI 'np/n- < 2  E3-(M1)
n n

Hence

sup 1 l Rn I R R ni (b)) < 03-(M+l )v2  .

o e B " :l "i n

S,-
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which implies that

Q~ =0. (2.40)

It is easy to see that

m -:s M + m+i m =11"..M ,(2.41)

P >- su) R () 0  + Q. (2.42)

From (2.40)-(2.42), it follows that

P(V 2 sup n R _ 2.3

seD 11~Im(.3

Since

It .(b. ) jxb. i d v <since d v 2 < 1.

ni j n ni n

""I~4Vr~c .b.) < (x.b )2 = l2 <J pve,

Is~(. . -(b. . j I,(l,

11" n~ - *j mjV"3rni+l

.b.

pv- 2m+2 < v-2m

and
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n: "j " i( Jl .m+l il: ~ b1jm b" "l.Jm+l

- j...j m - bj.. 112ii.

"pjb. - b. 1 jm+ 2

" 3m - 4m+4

n

Applying Lemma 1, we get

2p -2 24 2+V' v2 .4.2

0 < 2v exp 3 -  v /(2p v  n
_
+ 2 2m+2) (2.44)nn n n/ n nD-

2V2 p ( m+ l )exp{(c3-ml v2  2 -

)/2p4[r 4 m 3 r-i -2+
2vep-3 ml m2 m > 1. (2.45)nn

Here c > 0 is a constant independent of n, m. From (2.43)-(2.45), we obtain

n C

n> < mo n  )exp(-c3- v 2m+2 (2,46)
n - i1 n

-eD --

Since the right-hand side of (2.46) tends to zero as n - ®, we obtain (2,38).

Now we note that

sup max fxnij.< d nvn < vn 0, as n - . (2_47)
Oe 1<i<n

Hence, considering condition 1 of Theorem 1, we have

(2u- 2x'i)f(u)du, if x'. > 0

E(nD (-8) = I( { (2xn'i6 - 2u)f(u)du, if x'.e <0

-ni < .

= -f(O)(x +)2(l+o(1)) (2,48)

~n...........1
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for B e D, i l,...,m, n sufficiently large, where o(l) -+0 as n -'

uniformly for B e 0 and 1 < i < n, in view of (2.47). From (2.38) and

(2.48), we get

lrn V-2 Sr 1 0
nle ( il + fio)[I i a= 0, in probability

OeD i~l-

which implies that

2 n n
v n ( e n I - inf I le ni -'it 1) < -f (0)( (1) ) (2.49)

where O p(1) tends to zero in probability as n . Since 1illeni -xni
p

as a function of a is convex over R, (2.49) implies

n n
v - .2 ( l e n il - i n f i I e - X 'n~ ) < - f ( ) ( l l ep ( ) ) . ( 2 , 5 0 )

Since f(O) > 0, (2.50) implies (2.37), and Lemma 4 is proved.

Remark. Let us return temporarily to model (1.1) andconsider the

ML1 N estimate n defined by (1.2). It follows easily from Lemma 4 and (1.8)-n
that is a weakly consistent estimate of B For convenience of presenta-

-.n -01
tion we formulated this fact as a corollary of Theorem 1. Now we see that

the verification of this fact is, in fact, an important step in the proof

of Theorem 1.

Ir
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3. PROOF OF THE THEOREMS

Proof of Theorem 1. As mentioned earlier, we need only to prove

Theorem 1'. We begin with verifying that as n - ,

n
sup{IIiI tni( )xniII: Be 6} 0, in probability. (3.1)

D and t ni() were defined by (2.9) and (2.12)-(2.14), respectively. In

view of (1.18), we need only to prove that as n

n
O P(sup{1 anitni(8)I: B e D} > E) 0 (3.2)

i =l ni niB ~1 B )>E

where {ani) is an arbitrarily given constant array satisfying = nI ,

and c e (0,1), also arbitrarily given.

Without loss of generality, assume lanij > ... > ]a nn. Choose n and

rm according to (2.7) and (2.8), then (2.20) holds obviously. Define Um ,

Vm' Qm by (2.21)-(2.23) for 1 < m < M, and

rl

UO = P{sup a .t.(o)I > E/3 ) (3.3)

BeD i 1n -

n ,
V0 ={ P (b) > ti/3 (3.4)

BeG1  i=E/ + i

with b e B. It is easily verified that with Q0 9 U0, V0 defined by (3.2)-

(3.4), (2.24) also holds true for m = 0. Hence

M
Q0 - Uo + VO + Q1 (Um+V) (3.5)

m=O

Here M is defined by (2.8). Now we show that
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U0 + V0  0, as n w. (3.6)

By (2.18), for a e D, we have

n n
ni a .(a) < Z (0))I/2 < {1in(C/pn)2}I/2 O as n - (3.7)

Further, * ni() = 0 when a e D and le nil > pdn~n(> Ix'.i@) here pni() is

defined by (2.12). F'om (2.7), (2.19) and (3.7), we obtain

UO P{suBl a i Wi( ) ' 0) < I P(enil < -dn)< Cdn -+ 0. (3.8)

Using (2.17)-(2.20) and employing the argument for proving (2.36), it can be

shown that there exists constant C1 > 0 such that

V0 < 2p nPexp(.Cll n  0- O, as n -. (3.9)

Now (3.6) follows from (3.8) and (3.9). Further, by Lemma 3, we have, for n

large,

M 2p )m/2.
(U+V) < 4 " unPmexp(-48l /9 (3.10)

Since the function x3pmexp{-a(I)m/2} x > 0, attains its maximum at

x = b(6p/a)2/m, we have

21Pmexp{.i6 -1 ,/9)m/2, Pm P3pmexp{-16-1 (nl9g)m/2}
n n n 'n n

P 9nmgpm96p/c)6Pe-6 < (P/729)Pm(96p/,)6P

Hence, noting that pn . we obtain

M

(Um +Vm) <( 9 6 ) (pn/729) - 0. (3,12)m=l m=l
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From (3.5), (3.6) and (3.12), (3.2) follows. This concludes the proof of(3.1).

By (3.1) we have

n
j tni(6n)Xni I(OneD) + 0 in probability, as n (3.13)

and (2.7) gives, for n large, A/(v'pdn) > U2 (A is the number appearing in

condition 1 of Theorem 1). So by Lemma 2 we have

(I n  x'.Bni >0, aS.

I sneni- n iJ - n)In1 "n

Hence by (1.19)

i- sgn(e )x.II( j <pn) < (p+l)d 0, a.s. (3.14)
=i ,,ldn .. n --n.

From (2.12)-(2.14), (3.13) and (3.14), we have

nf n
.x ni($n)xni- i~sgn(eni)ni I(I nl < )d - 0, in probability. (3.15)

^ 2

Since sup{ nin: n <"n' < i < n} < vndn pndn -+ 0, we have
xni( n) = 2f(O)(l +O(1))x'in on account of condition 1 of Theorem 1,

nin) = 2fO 0p'-n7

where o p(1) - 0 in probability as n - uniformly for 1 < i < n. From this,

(1.18) and (3.15), we have

nI
2f(O) sgn(e) ) 0, in probability. (3.16)2n l sg~ i-nil

In view of (1.18), (1.19) and the assumptions on {enil, it follows by

Lindeberg's theorem that
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, lsgn(e .i)_xni -*N(O, I ). (3.17)

From (3.16), (3.17) and Lemma 4, we obtain (1.20) ( notice (2.2)). This

concludes the proof of Theorem 1', hence Theorem 1.

Proof of Theorem 3. The proof differs from the above argument only in

some minor details, therefore omitted.

Proof of Theorem 2. Define T nby (1.12), and

2n nO = inn 0 ~ _n0 n= @~n'O)

ni = in1 (x -i ), i

ni = (//n-, ni i = ..

We transform the model (1.11) into the following form:

Yi= Eni~no + ei, i n.

Since 1!%l ni~ni = jp+l, and (1.13) guarantees that max 1inlZnil -~0 as

n -' ,Theorem 1' can be applied, and we obtain

-n()( N(n0 IJ9 ~+ as n -~(3.18)

whre~n= cz 0, 0),and an0 Bn are the Minimum L1-Norm estimates of

whr Iialy (1.15 follows easilyO
an~ o respectively. Now (3.18) implies the assertion (1.14) and also
the asymptotical independence of a ando^ Fnly (15)flwse iy
from what has already been proved. Theorem 2 is proved.

Remark. Wu (1987) proved that in model (1.1) the ML1N estimate n is

strong consistent if the following conditions are met:
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10. {ei } satisfies the condition stated in Theorem 3.

20. Define dn = max(l, x1Il ,...,xn11) and pn = the smallest

eigenvalue of Sn, then p n (dn log n) -, dn/nC - 0 for some c > 0.

At one time it was expected that if condition 10 is replaced by

1': el, .e2' "' are i.i.d. and e1 has a unique median 0, the conclusion

of Theorem 1 is still true. The motivation behind this conjecture is the

simple case of estimating a population median by the sample median, in

which the uniqueness of the population median is enough for consistency.

Yet the following example shows that this is not true:

Exanple. In model (1.1) take p = 1 (a is one-dimensional), xn =

logn/-in, n = 1,2,3,..., el, e2 , ... are i.i.d., e1 has a density function

f(u) = juII(jul <1). Here dn = 1, Pn = Sn -(log n)3. Hence condition 20

is fulfilled.

In this example all conditions of Theorem 1, except that f(O) > 0, are

met. In the course of proving Theorem l' we have already shown this (see

(3.15)). (Note that in proving (3.15) we made no use of f(O) > 0.)

121n n iXion

pn/ lsgn(edx 21 -"= x i  f(u)du I(IanI <l) 0 ' in probability. (3.19)

Now if
Now-ifO, in probability, (3.20)

nS

then since {xi} is bounded, from (3.19) and f(u) = Iul(Jul <1) we have

n nl
P_ 112/sgn(e - 1126 2  x 3 - 0, in probability. (3.21)-n/ i g i)xi - n Bni l

n- n iNl
But by Lindeberg's theorem we have p n-I.isgn(ei)x i L N(O,1), while

is bounded in n, p n and in 0 in probability. Thus (3.21) is

impossible, which in turn implies that (3.20) is impossible.

~ ' IJ ........... ~ .* ** -. .
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APPENDIX 1

In this appendix, all notations and numbering of formula are according

to Bassett and Koenker (1978), if not defined here.

Consider the model

yt= x t + ut, t = Is...T , ..

where B, one-dimensional, is the unknown parameter, ul1 u2  . are indepen-

dent random errors with a conmmon distribution N(0,1), and

x1 Il~~ x2 = + V/10l, x 3 = x4 =*.=1

First we verify that the minimum point of the function

T
JW= I y -y

t= 1

is unique. For if this is not true, then owing to the convexity of J(s),

there would exist an interval. [a,b], -~< a < b < -, such that J(c)

inf{J(a): -- < < -} for each c e (a,b). Choose a point r e (a,b),

r E y t/xts t = 1,...,T. We should have J'(r) =0, i.e.,

~1 rb) - V7~ - 112 T-r) .
-sgn(y, rlT +.1.)sgn 12  + 1 -0)r) - I sgn~yt )=0

/TY2-t=3 P

But this is impossible, since the sum of the first two terms is an irrational

number while the third term is an integer. This proves the uniqueness stated

above.I
Now in this model H = 11,293,... ,T}. By the choice of {x t}, the

distribution of ZT(6ji) is nonlattice. So according to (3.9), we should have

lrn T 1 Pr(Z T(61l)e C[0,l]) exists and not zero.(*N

But

NO

v~ -- a .'~'C W'.v* * * ~*~ *~ XU
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ZT(6,l) = 2 1.0+-6g(u--/2(l+ Z)) + I 4-sgn(u -T-" 6).

t=3

Therefore, when T is even the right-hand side, with probability one, equals

to an odd multiple of /2-plus ±1/5, which is always outside [-1,1]. Conse-

quently we have

P(ZT(S c,)EC[O,l]) = 0, for T = 2,4,6,...

and (*) breaks down.

a
0

0

J

.1+

9-

" a.,.,' ,' ,'v'.,.,, .,'+''.,. '. -... ''+P ; t x
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APPENDIX 2

In this appendix, all notations and numbering of formula are according

to Aznemiya (1982) if not defined here.

1. Denote by AI(sO) the value of A1 in (3.12) taken at the true

parameter point - We shall proceed to show that AI(e0 ) - in probability

as T - "

Define

1, if y- 1

t 0, otherwise.

Since CT = Td < d < it follo < T 1  Hence and
, ,i olws that CT Hece/3C, n

A 1(@0)= 2C T1 j Ztlog(l +e

T-CT>-C _I tlgl TlYt-Xt~ol Z,

-l1 T
> 2CT log(l +e- I A.,

T tt %

t= 1

Since yt " xt-O ut, t = 1,2,... are independent and identically distributed

with a common density function f which is continuous and f(O) > 0, it follows

that there exist two positive constants h1 and h2 not depending on t, such

that A
h 1C < 1) <hCT1, t 1,2....

I Tt 2 T

Therefore we obtain

E() > 2log(l+e 1)hlTCT
2

Here we used the fact that CT Td and 1/3 < d < 1/2. Further
T'.
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Var(A) < (2CT 1 log(l +e-)) 2 E
t=l

<(2C 1 log( +e 1  2Th2CT

: 4h2 1og2 (l+e -
1 )T/C 3 0

by the definition of CT given above. From E(A) and Var(A) -0 0, we have

A -® in probability as T ®. Since AI(BO) > A, we obtain AI(BO) -* in

probability as T

2. Denote by Bl(@O) the value of B, (in (3.22)) taken at the true

parameter point go. We shall now show that BI(B O ) - in probability as

T c.

Define Et as before. Since yt - xo = ut' we have

T

B ( T-1/2 T u 1 IwtGo(Ut)IIxitI

1 t 12 T

T- ,Tu T- 2 tlxit 2  Bt=l

where M = sup{Ixtj: t = 1,2,...) < - by assumption. We have

T
E(1 -1 1 2  - 2E() M~e+TTT) 1 CT x it 1

1 h T 112 C 1  T 2 a
77P7-T 1 TTh x w as T xitt= 1

T 2This is because It=l 1x it/T tends to a positive limit as T - (by assumption),

and that CT = Td 1/3 d < 1/2. Further

adta
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Var(B) < M-2(e+ )- 2  T t4 E2

tz 1 it t
M 2(e+ ) -2 T- 1 l<: EE2

M (e+1)-2 T 1 Th T 0 , as T- .

Since E(B) wand Var(B) .0, we have B - in probability as T-* . Since J

B (OO) > B, the same is true for B 14O).

PI


